Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 597(7878): 709-714, 2021 09.
Article in English | MEDLINE | ID: mdl-34497421

ABSTRACT

Multiple sclerosis (MS) lesions that do not resolve in the months after they form harbour ongoing demyelination and axon degeneration, and are identifiable in vivo by their paramagnetic rims on MRI scans1-3. Here, to define mechanisms underlying this disabling, progressive neurodegenerative state4-6 and foster development of new therapeutic agents, we used MRI-informed single-nucleus RNA sequencing to profile the edge of demyelinated white matter lesions at various stages of inflammation. We uncovered notable glial and immune cell diversity, especially at the chronically inflamed lesion edge. We define 'microglia inflamed in MS' (MIMS) and 'astrocytes inflamed in MS', glial phenotypes that demonstrate neurodegenerative programming. The MIMS transcriptional profile overlaps with that of microglia in other neurodegenerative diseases, suggesting that primary and secondary neurodegeneration share common mechanisms and could benefit from similar therapeutic approaches. We identify complement component 1q (C1q) as a critical mediator of MIMS activation, validated immunohistochemically in MS tissue, genetically by microglia-specific C1q ablation in mice with experimental autoimmune encephalomyelitis, and therapeutically by treating chronic experimental autoimmune encephalomyelitis with C1q blockade. C1q inhibition is a potential therapeutic avenue to address chronic white matter inflammation, which could be monitored by longitudinal assessment of its dynamic biomarker, paramagnetic rim lesions, using advanced MRI methods.


Subject(s)
Astrocytes/pathology , Lymphocytes/pathology , Microglia/pathology , Multiple Sclerosis/pathology , Animals , Brain/pathology , Complement C1q/antagonists & inhibitors , Complement C1q/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Inflammation/pathology , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Middle Aged , Multiple Sclerosis/diagnostic imaging , RNA-Seq , Transcriptome , White Matter/pathology
2.
Nat Commun ; 12(1): 4907, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34389726

ABSTRACT

The intestinal mucosa constitutes an environment of closely regulated immune cells. Dendritic cells (DC) interact with the gut microbiome and antigens and are important in maintaining gut homeostasis. Here, we investigate DC transcriptome, phenotype and function in five anatomical locations of the gut lamina propria (LP) which constitute different antigenic environments. We show that DC from distinct gut LP compartments induce distinct T cell differentiation and cytokine secretion. We also find that PD-L1+ DC in the duodenal LP and XCR1+ DC in the colonic LP comprise distinct tolerogenic DC subsets that are crucial for gut homeostasis. Mice lacking PD-L1+ and XCR1+ DC have a proinflammatory gut milieu associated with an increase in Th1/Th17 cells and a decrease in Treg cells and have exacerbated disease in the models of 5-FU-induced mucositis and DSS-induced colitis. Our findings identify PD-L1+ and XCR1+ DC as region-specific physiologic regulators of intestinal homeostasis.


Subject(s)
B7-H1 Antigen/immunology , Dendritic Cells/immunology , Homeostasis/immunology , Intestinal Mucosa/immunology , Receptors, Chemokine/immunology , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Colitis/genetics , Colitis/immunology , Colitis/metabolism , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/metabolism , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/immunology , Homeostasis/genetics , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome/genetics , Transcriptome/immunology
3.
iScience ; 24(4): 102356, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33898947

ABSTRACT

Splenic Ly6Chigh monocytes are innate immune cells involved in the regulation of central nervous system-related diseases. Recent studies have reported the shaping of peripheral immune responses by the gut microbiome via mostly unexplored pathways. In this study, we report that a 4-day antibiotic treatment eliminates certain families of the Bacteroidetes, Firmicutes, Tenericutes, and Actinobacteria phyla in the gut and reduces the levels of multiple pattern recognition receptor (PRR) ligands in the serum. Reduction of PRR ligands was associated with reduced numbers and perturbed function of splenic Ly6Chigh monocytes, which acquired an immature phenotype producing decreased levels of inflammatory cytokines and exhibiting increased phagocytic and anti-microbial abilities. Addition of PRR ligands in antibiotic-treated mice restored the number and functions of splenic Ly6Chigh monocytes. Our data identify circulating PRR ligands as critical regulators of the splenic Ly6Chigh monocyte behavior and suggest possible intervention pathways to manipulate this crucial immune cell subset.

4.
Ann Neurol ; 89(6): 1195-1211, 2021 06.
Article in English | MEDLINE | ID: mdl-33876477

ABSTRACT

OBJECTIVE: This study was undertaken to investigate the gut microbiome in progressive multiple sclerosis (MS) and how it relates to clinical disease. METHODS: We sequenced the microbiota from healthy controls and relapsing-remitting MS (RRMS) and progressive MS patients and correlated the levels of bacteria with clinical features of disease, including Expanded Disability Status Scale (EDSS), quality of life, and brain magnetic resonance imaging lesions/atrophy. We colonized mice with MS-derived Akkermansia and induced experimental autoimmune encephalomyelitis (EAE). RESULTS: Microbiota ß-diversity differed between MS patients and controls but did not differ between RRMS and progressive MS or differ based on disease-modifying therapies. Disease status had the greatest effect on the microbiome ß-diversity, followed by body mass index, race, and sex. In both progressive MS and RRMS, we found increased Clostridium bolteae, Ruthenibacterium lactatiformans, and Akkermansia and decreased Blautia wexlerae, Dorea formicigenerans, and Erysipelotrichaceae CCMM. Unique to progressive MS, we found elevated Enterobacteriaceae and Clostridium g24 FCEY and decreased Blautia and Agathobaculum. Several Clostridium species were associated with higher EDSS and fatigue scores. Contrary to the view that elevated Akkermansia in MS has a detrimental role, we found that Akkermansia was linked to lower disability, suggesting a beneficial role. Consistent with this, we found that Akkermansia isolated from MS patients ameliorated EAE, which was linked to a reduction in RORγt+ and IL-17-producing γδ T cells. INTERPRETATION: Whereas some microbiota alterations are shared in relapsing and progressive MS, we identified unique bacteria associated with progressive MS and clinical measures of disease. Furthermore, elevated Akkermansia in MS may be a compensatory beneficial response in the MS microbiome. ANN NEUROL 2021;89:1195-1211.


Subject(s)
Gastrointestinal Microbiome/physiology , Multiple Sclerosis, Chronic Progressive/microbiology , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Relapsing-Remitting/microbiology , Multiple Sclerosis, Relapsing-Remitting/pathology , Adult , Akkermansia , Animals , Atrophy/pathology , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/microbiology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Male , Mice , Middle Aged , Quality of Life
5.
Cell Host Microbe ; 26(6): 779-794.e8, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31784260

ABSTRACT

Fecal transfer from healthy donors is being explored as a microbiome modality. MicroRNAs (miRNAs) have been found to affect the microbiome. Multiple sclerosis (MS) patients have been shown to have an altered gut microbiome. Here, we unexpectedly found that transfer of feces harvested at peak disease from the experimental autoimmune encephalomyelitis (EAE) model of MS ameliorates disease in recipients in a miRNA-dependent manner. Specifically, we show that miR-30d is enriched in the feces of peak EAE and untreated MS patients. Synthetic miR-30d given orally ameliorates EAE through expansion of regulatory T cells (Tregs). Mechanistically, miR-30d regulates the expression of a lactase in Akkermansia muciniphila, which increases Akkermansia abundance in the gut. The expanded Akkermansia in turn increases Tregs to suppress EAE symptoms. Our findings report the mechanistic underpinnings of a miRNA-microbiome axis and suggest that the feces of diseased subjects might be enriched with miRNAs with therapeutic properties.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Fecal Microbiota Transplantation , MicroRNAs/therapeutic use , Multiple Sclerosis/drug therapy , Verrucomicrobia , Administration, Oral , Akkermansia , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Feces , Gastrointestinal Microbiome/immunology , Host Microbial Interactions , Humans , Lactase/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , T-Lymphocytes, Regulatory/metabolism , Verrucomicrobia/growth & development , Verrucomicrobia/immunology , Verrucomicrobia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...